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A relation connecting the components of the plastic, elastic and total deformation
tensors is given in [1], The author of [2] asserts that "the usual assumption that the
total deformation is a sum of the elastic and plastic components, ceases to be valid
when the deformation is finite™, This assertion is based on the fact that "the compo-
nents of the finite deformation are expressed in terms of the displacements in a non -
linear manner and cannot, generally speaking, be additive™ ,Below it is shown that
for a simple process the property of additivity of the deformation tensors (which is true
according to [1] for the covariant components of the plastic, elastic and total defor-
mation tensors ) implies, for a finite homogeneous deformation, the additivity of the
displacements corresponding to the plastic, elastic and total displacements,
Following [1], we shall consider a deformable continuum and single out its

three states: the initial, the deformed and the "unloading" state, The basis vectors

9; of the Lagrangian &; -coordinate system, the components of the metric tensors

g;; and other characteristics related to the above three states will be denoted by the
superscripts ©, ~ and * , respectively, We carry out the analysis with the help of a
two-stage deformation: from the state £i;° to the state g;;* , and from this into
the state gij. The corresponding passages are determined by the plastic &;7/, el-
astic €;% and the total ¢;7 deformation
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The metric spaces of the three states are connected with each other by the
following relations:

S OF V9 = kD, o= O + Vyour®y 9,0 — C‘{”"S,f (2)
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where u;7, ;% and u; are the components of the plastic, elastic and total dis-
placement vectors, Using (1) and (2), we can write the deformation tensor components

in one of the following forms:
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The components of finite deformation are expressed, in accordance with (3),
in terms of the displacements in a nonlinear manner, This throws doubts on the deter-
mination of the deformation components, since the paper [2] asserts that the additivity
of the deformations does not imply the additivity of the displacements, The diserepancy
is explained as follows: the last relation of (1) connects the tensor components which
have different basis, although they lie in the same Lagrangian coordinate system,In-
deed, the additivity of the components of the displacement vectors with different bases
is not apparent, If however we reduce the displacements to a single basis, then the ad-
ditivity properiy will hold, Indeed, thelast relation of (1) can be transformed, using
(4) and (3), into the equivalent expression

5)
°m °s,° _ kek %ken °pm °ps_° (
€1 % Bms = G ¢ Cn Bms

from which we obtain

°m __ Jkek °pm

G =0 % (6)

Transforming the tensor V,*uek to the basis 9,° yields
k © *pk * *
V,i*ue — V,iu eScs y s ci_e_k — 6ik + V,iu ek (7)

Using (7) and (3 ) we obtain from (6)
;™= (8% + V,u' O PE) P = 0P - Vo
and this yields, in accordance with the notation adopted,
Vi"um = Vi"upm + Vi"uem

which proves that the displacements are additive.

It must be noted that the assertion given in [2] stating that the relation # =

FeFP  (where F is the matrix of the displacement gradients) is less general than

(1), is not fully justified, although this relation is analogous to ().
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